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We have performed molecular-dynamics simulations of the intermediate scattering function F(k,t) of
a Lennard-Jones gas at room temperature, low densities, and very low k values in order to study the den-
sity dependence of the deviations from the free-gas dynamics. We have extracted the linear term in the
density expansion of these deviations as a function of time, which provides information on the two-body
interaction potential. We compare these results with those obtained recently from a neutron inelastic
scattering experiment on *®Ar, performed in the same range of thermodynamical states and with a
theoretical calculation for hard spheres. The comparison confirms the experimental results and shows
unambiguously that the linear term in a density expansion of F(k,?) and of the dynamic structure factor
S (k,w) is a sensitive probe of the details of the pair interaction.

PACS number(s): 51.10.+vy, 61.12.Ex

From recent inelastic neutron scattering measurements
of the dynamic structure factor S(k,») of low-density
gaseous “°Ar at very low momentum transfer, a correc-
tion to the free-gas behavior has been obtained [1]. In
Ref. [1] it was experimentally shown that for a real gas
the concept of virial (i.e., density) expansion, already ap-
plied to the study of static properties [2], is also valid for
S (k,») in the appropriate (k,w) range, which is outside
the region of the (k,») space where collective modes are
present in the spectra of density fluctuations. Then, ei-
ther condition kly>>1 or wty;>>1 must be satisfied,
where [/, and ¢, are the Boltzmann mean free path and
mean free time, respectively, of a corresponding hard-
sphere (HS) system.

A general theoretical support to this approach has
been also given recently [3]. Thus one can write for the
normalized dynamic structure factor

S(k,w)
S (k)

where n is the number density, S (k) is the static struc-
ture factor, and S‘Q(k,w) is the free-gas term which
equals the dynamic structure factor of a system of nonin-
teracting particles. The first-order term S'V(k,w) is
directly related to the two-body dynamics and therefore
to the details of the pair interaction in the system.
Although HS theory [4] correctly predicts some spec-
tral features of S''(k,w), nevertheless important
differences exist, in this respect, between the model HS
system and a real gas [1], which have been attributed to
the fact that the characteristics of the real potential must
determine precisely the dynamics of an isolated pair.
However, only HS calculations are available [4] for a
comparison between experimental results and theory.

=Sk, 0)+nSVk,0)+0(n?), (1)
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The evaluation of the density correction to the free-gas
limit of S(k,») for a realistic pair potential is therefore
essential in order to have a more meaningful comparison
with the experimental results and also to assess the
difference from HS theory.

An exact, either quantum mechanical or classical, cal-
culation of SV(k,w) is possible but quite difficult. An
easier approach is, in principle, the one based on classical
calculations performed by means of molecular-dynamics
(MD) computer simulation. A classical approach is ap-
propriate for argon at room temperature, while MD gives
the possibility of studying a large range of densities so
that the onset of higher-order terms in (1) can be investi-
gated. In the MD case one evaluates, for a given pair in-
teraction potential, the Fourier transform of S (k,w), i.e.,
the so-called intermediate scattering function

F(k,t)=%2 (exp[ —ik-R,(0)Jexp[ik-Ry(D)]) , ()
a,b

where N is the number of particles, R,(¢) is the position
of atom a at time ¢, and the brackets denote an ensemble
average. A density expansion equivalent to (1) can then
be written as

F(k,t) _ + . S(k,o)
—F(k,O) f_w dwexp(twt)—s(k)
=FOk,t)+nF Y k,t)+0(n?) , (3)

where F©(k,t) and FV(k,t) are the Fourier transforms
of SO%k,w) and SV(k,w), respectively. The free-
particle term is a simple Gaussian given by
FOY(k,t)=exp( —kpTk?t?/2M ), where kg, T, and M are
the Boltzmann constant, the temperature, and the atomic
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mass, respectively. The excess correlation AF(k,t)
=F(k,t)/F(k,0)—F'%(k,t) contains the density depen-
dence and its leading term is connected to the two-body
dynamics.

At the very low densities required for the higher-order
terms in (3) to be negligible and either condition kl, >>1
or wty>>1 to be fulfilled, MD simulation is an unusual
technique because collisions are very rare. Therefore,
very long calculations are necessary to produce AF(k,t)
data suitable for a density expansion with a statistical er-
ror small enough to obtain F'!X(k,t) with sufficient pre-
cision, since at low density F'©(k,¢) is the dominant term
in (3). Moreover, F'!(k,t)~AF(k,t)/n is appreciably
different from zero only at very low k, so that a rather
large box is required, which implies a large N even at low
densities.

MD simulations of F(k,t) for continuous pair poten-
tials at larger n and k values have been reported quite a
few years ago [5]. Here we briefly describe the present
MD calculations and the density analysis of F (k,?) at low
k values and low density, from which F')(k,t) can be
determined and compared with experimental data. The
Lennard-Jones (LJ) pair potential has been chosen be-
cause it is the simplest functional form for a realistic pair
potential for a MD simulation and permits a meaningful
comparison with both the experimental results and HS
theory.

The MD simulations have been performed at room
temperature with the Verlet algorithm [6] for six densi-
ties in a cubic box of fixed size L such that the minimum
k value (k,;, =27/L=0.5 nm™!) is in the range where a
linear density dependence has been found experimentally
[1]. The density was varied, by changing N, in the range
0.25<1<2.00 nm~3 (0.0099<n*<0.0790). The box
length was L*=36.9 and the time step At*=0.002. We
denote by asterisks dimensionless quantities reduced by
means of appropriate combinations of the LJ parameters
o and g, and of the atomic mass M, given for 36Ar by
0=0.3405 nm, £/kz=119.8 K, and M =59.726X10~%’
kg. In particular, the reduced time unit equals 2.05 ps.
Some parameters of the various runs are listed in Table 1.
It can be seen that even at the lowest density the box
length is larger than the mean free path [/, while #, is of
the order of 103 time steps. We have truncated the in-
teraction at 30 and, since the average number N, of par-
ticles in the cutoff sphere, also given in Table I, is ex-
tremely small, we have used neighbor tables (which were
updated using the link-cell method [6]) to make the calcu-

TABLE 1. Parameters of the simulation runs. The tempera-
ture is 7=300.0 K (T*=2.504), except for the last state where
T=301.5 K (T*=2.517).

N n (nm™3) p (MPa) ¥ ty N,
496 0.25 1.03 22.81 9.03 1.12
992 0.50 2.05 11.41 4.52 2.
1488 0.75 3.05 7.60 3.01 .3.35
1984 1.00 4.05 5.70 2.26 4.46
2977 1.50 6.01 3.80 1.50 6.70
3969 2.00 8.00 2.85 1.13 8.93
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lation as efficient as possible.

We first evaluated the normalized correlation functions
F(k,t)/F(k,0) for the discrete set of wave vectors k
compatible with the shape of the box with 0.5<k <1.5
nm~!. Then, the excess correlation AF(k,t) was ob-
tained by averaging over all directions of k with fixed k,
which are statistically equivalent, and subtracting
FO(k,t). An estimate of the statistical uncertainties was
also obtained from the averaging procedure.

The simulation runs were extended up to 10% time steps
for the first four densities and to 10’ for the two higher
ones. The need for very long runs is essentially due to the
fact that in a low-density gas, statistical averaging is a
very slow process because of the large ratio t§ /Ar*.
This is apparent when AF(k,t) is compared with inter-
mediate results obtained with a lower number of time
steps. An example of this comparison is displayed in Fig.
1, which shows that the final run lengths provide a
sufficient convergence of the calculations. In particular,
it appears that AF(k,t) converges to zero at times of the
order of twice the position of the pronounced minimum.
The convergence rate is faster at higher densities, where
t§ /At* is lower.

Another source of error, especially at low k, may be ar-
tifacts due to the finite system size and the recurrence
time (which is the time it takes a sound wave to travel
through the box). In order to estimate these effects at
least qualitatively, we have repeated the simulation at
n=0.50 nm ™3 with a box size of exactly 2L (which is 8
times the number of particles) and 5X 107 time steps.
The results are also shown in Fig. 1. Given the difficulty
of the calculation, the agreement between systems of
different size is very good. A possible overall systematic
error of the order of the statistical one has been taken
into account.

AF(k,t)/n is plotted in Fig. 2 for three values of k. At
the lower k values the most prominent features are a neg-
ative broad peak followed in time by a positive one, while
another positive peak emerges at lower times as k in-
creases. The peak abscissas are at approximately con-
stant values of k¢t and are all much larger than the half
width of F©(k,t), i.e., the significant deviations from
FOk,t) are confined to the tail of the correlation func-
tion F (k,t)/F (k,0).

In Fig. 2 a linear density dependence of AF(k,t) would
show up as a flat surface along the n axis. This is indeed
the case for the largest k value and n <1.25 nm~3. In
contrast, at the lowest k value the range of linearity, if
any, is much smaller.

The analysis in terms of a density expansion has been
carried out following the same procedure applied to the
experimental results [1], but working in the time domain
instead of the frequency domain. At each (k,?) point we
performed a linear least-squares fit with zero intercept
(i.e., a one-parameter fit) to the data for AF(k,t) as a
function of density, using the data at a number of densi-
ties varying from two to six.

As an overall criterion for assessing the linear density
dependence we use, for each k value and for each number
of densities used in the fits, the mean square deviation 82
of the weighted least-squares fit divided by the number of
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! FIG. 1. AF(k,t) at n=0.50 nm~® and
k =1.00 nm ™! for three lengths of the simula-
tion run: 10° time steps (dashed line), 107 time
steps (solid line), and 10® time steps (error
bars). The error bars for the simulations with
10 and 10’ time steps are much larger than
those reported for the case of the longest run.
Dots with error bars are the results of the
simulation performed in a box of length 2L.
The estimated recurrence time for an ideal gas
in the smaller system is indicated by an arrow.
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FIG. 2. AF(k,t)/n* as a function of time and density at
three values of k: (a) k=0.50 nm™!, (b) k=0.71 nm ™}, and (c)
k=1.00nm™ '

25

degrees of freedom and averaged over ¢ for times up to
the second positive peak included. The results are report-
ed in Table II. Apart for the unexplained exception at
k=1.00 nm ™!, the inclusion in the fit of higher densities
data produces an increase of 82 that is larger for smaller
k, thus showing that the region of linear behavior in n ex-
pands with k. In particular, 82 increases clearly when the
third density is included in the fit at k =0.50 nm™! and
the fourth one is included in the fit at k=0.71 nm !,
For k>0.87 nm™!, the quality of fit is not too much
changed by the inclusion of densities up to » =<1.50
nm~ °. These results are in agreement with the experi-
mental ones [1] for SV(k, ), although the analysis of the
experiment suggested that also the data at n =2.00 nm 3
could be used for linear fits for k£ >1.00 nm !,

According to the previous results, we have determined
FY(k,t) as the linear fit parameters, using data
with 0.25<n<0.50 nm™* at k=0.50 nm~', with
025<n<0.75 nm™® at k=0.71 nm~', and with
0.25<n<1.50 nm > at K >0.87 nm~!. The results for
FY(k,t) are plotted in Fig. 3, where they are compared
with HS theory [4] and with the experimental data for
36Ar [1], after Fourier transformation of the respective
SW(k,w) to the t space. We note that the main results of
Ref. [1] are clearly confirmed when the comparison be-
tween experimental and HS data is extended to include
MD simulation. In particular, the. following features

TABLE II. 8% of the weighted least-square fits of F'(k,¢)
with a number of densities varying from two to six.

k (nm™Y) Two Three Four Five Six
0.50 0.32 3.34 4.88 10.55 11.19
0.71 0.97 1.36 3.09 5.29 7.90
0.87 1.04 0.85 1.10 1.10 3.31
1.00 0.51 3.57 2.96 2.64 2.93
1.12 0.56 2.02 3.23 4.68 6.58
1.22 2.07 1.14 2.15 4.29 7.82
1.41 0.07 0.57 1.16 1.58 2.91
1.50 0.40 1.45 2.35 2.58 4.02
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emerge from Fig. 3.

(1) The HS model correctly predicts the time range
where deviations of F(k,t) from the free-gas limit are
significant also for real potentials, but the time depen-
dence of these deviations is different for HS compared to
the real pair potential, the difference increasing with in-
creasing k.

(2) The possibility of extracting quantitative informa-
tion on the two-body dynamics even in the presence of
the dominant free-gas contribution is evident, in the in-
vestigated k range, from both the experiment and the
computer simulation.

(3) The simulation data lie between the experimental
and the HS theoretical ones. In particular, at the lowest
k the three curves are in good qualitative agreement,
while at high k the simulation is at least qualitatively

similar to the experimental results.

We can therefore conclude that MD simulations pro-
duce meaningful results also in a very low density regime
and strongly support the experimental finding of a quite
good sensitivity of SV(k,0) or FV(k,1) to the details of
the pair potential. In particular, the remarkable qualita-
tive agreement of the three sets of data at the lowest &,
contrasted with the large difference between HS and con-
tinuous potentials at higher k, suggests that F'')(k,z), or
equivalently S''(k,®), when studied in the appropriate k
range, may be a sensitive probe of the intermediate- and
the short-range part of the pair interaction. Surprisingly,
these differences already show up at k values correspond-
ing to wavelengths that are of the order of 20 molecular
diameters.
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